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Alkyl Grignard reagents were found to be isomerized to more

stable ones in high isomerization ratios (499%) under coopera-

tive catalysis by iron and copper, which promote isomerization of

alkyl groups and transmetalation between Fe–Mg, respectively.

Alkyl Grignard reagents, obtainable simply by mixing alkyl

halides with magnesium metal, are one of the most convenient

alkylmetals in organic synthesis. Ti(IV) and Ni(II) complexes

are known to catalyze isomerization of secondary alkyl

Grignard reagents to primary ones through a b-hydride
elimination–hydrometalation sequence but the conversion is

generally low.1–4 On the other hand, we have developed

arylmagnesiation of alkynes catalyzed by iron and copper

complexes, featuring a rare example of cooperative catalysis

of two different metals, where iron and copper deal with

addition to alkynes and transmetalation between Fe–Mg,

respectively.5,6 Here we report that Fe–Cu cooperative cata-

lysis works effectively in the isomerization of alkyl Grignard

reagents to more stable ones, where isomerization of the alkyl

groups and transmetalation between Fe–Mg are promoted by

Fe and Cu, respectively.7

The efficiency of the catalyst system was evaluated for the

isomerization of 2-hexylmagnesium bromide (1a) to 1-hexyl

derivative 2a, which is more favored both electronically and

sterically. Thus, 1a was treated with a catalyst consisting of

FeCl3 (2.5 mol%) and/or CuBr (5 mol%) along with PBu3 (10

mol%), and the isomerization ratio was determined after

transformation to 2-hexyl(phenyl)silane (3) and 1-hexylsilane

4 upon treatment with chloro(phenyl)silane (2 equiv.) at 30 1C

for 2 h (Table 1). With both the iron and copper catalysts,

isomerization was completed within 10 min at�25 1C to give 4

in 83% yield and with 499% selectivity (entry 1).8 The

isomerization was slow at a lower temperature (entries 2 and

3), whereas the isomerization ratio decreased as the reaction

temperature was raised, probably because the catalyst is

unstable at higher temperatures (entries 4 and 5). In contrast,

with the iron catalyst alone, the isomerization proceeded only

to a small extent (p3%) even over a prolonged reaction

period or at a lower temperature (entries 6–8). CuBr did not

catalyze the isomerization at all in the absence of FeCl3 (entry

9). Thus obtained 2a reacted with benzaldehyde and CO2 to

give alcohol 5 and carboxylic acid 6a (Scheme 1). Under the

cooperative catalysis, other 2-alkyl Grignard reagents 1b and

1c also underwent complete isomerization (Scheme 1).

Several results are available to discuss the reaction mechan-

ism. The Fe–Cu-catalyzed isomerization of 1,1,1-trideuterio-2-

hexylmagnesium reagent 1a-d3 followed by the reaction with

CO2 gave 2,2,3-trideuterioheptanoic acid (6a-d3) (Scheme 2).

The result that a deuterium atom migrated from the a-position
to b is consistent with the b-hydride elimination–hydrometala-

tion mechanism, as proposed in the titanium-catalyzed iso-

merization.2 Stoichiometric reactions of FeCl3 or CuBr with

2-octylmagnesium chloride (1b) gave us a clue toward solving

which catalyst is responsible for the isomerization of the alkyl

group. Thus, treatment of FeCl3–PBu3 with 1b (6 equiv.) at

�25 1C for 10 min followed by quenching with D2O gave

1-deuteriooctane (7) in 77% yield (based on Fe), whereas the

same treatment of CuBr–PBu3 gave only 2-deuteriooctane

(Scheme 3).9 The production of 7 in the reaction of FeCl3 is

Table 1 Isomerization of 2-hexylmagnesium bromidea

Entry

Amount (mol%)

T/1C Time Yield (%)b 3 : 4bFeCl3 CuBr

1 2.5 5 �25 10 min 83 (81)c 1 : 499
2 2.5 5 �40 10 min 95 94 : 6
3 2.5 5 �40 24 h 77 1 : 499
4 2.5 5 �10 10 min 88 15 : 85
5 2.5 5 30 10 min 89 95 : 5
6 2.5 0 �25 10 min 84 97 : 3
7 2.5 0 �25 24 h 74 97 : 3
8 2.5 0 �40 24 h 83 98 : 2
9 0 5 �25 10 min 499 499 : 1

a The reaction was carried out in THF (2.0 mL) under a nitrogen

atmosphere using 2-hexylmagnesium bromide (1a: 0.30 mmol) and

PBu3 (30 mmol) in the presence of FeCl3 (7.4 mmol) and/or CuBr

(15 mmol), which was followed by treatment withClSiH2Ph (0.60 mmol)

at 30 1C for 2 h. b Determined by GC. c Isolated yield based on 1a

is given in the parentheses.
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ascribed to a 1-octyliron species generated through isomeriza-

tion of the octyl group on iron. From these results, in addition

to the essential role of copper as a co-catalyst, we assumed that

a cooperative catalysis similar to that in the arylmagnesiation

of alkynes5 is operative as shown in Scheme 4. Here, FeCl3,

after being converted into 2-alkyliron complex 8 upon reaction

with 1, promotes isomerization of alkyl groups through a

b-hydride elimination–hydrometalation sequence to give 11

(cycle A),10 which goes into cycle B on transmetalation with

cuprate 13 to give 1-alkylcuprate 12 and to regenerate 8.

Further transmetalation of 12 with 1 gives 1-alkyl Grignard

reagent 2 and regenerates cuprate 13.

In contrast to 2-hexylmagnesium bromide (1a), 3-hexyl

derivative 14 did not undergo the efficient isomerization to

2a, even in the presence of twice the amount (Fe: 5 mol%) of

the Fe–Cu catalyst, giving 3-hexyl(phenyl)silane (15) and

1-hexylsilane 4 in 61% and 10% yields, respectively, upon

treatment with ClSiH2Ph (Scheme 5). Coproduction of a

considerable amount (18% yield) of hexenes, mainly consist-

ing of internal ones, implies that the sterically demanding

internal alkenes dissociate from complexes 18, generated from

17 as shown in Scheme 6, to give free iron–hydride complex 19,

which decomposes with loss of the catalytic activities.11 The

reaction of 14 in the presence of 1-decene (1 equiv.) gave 60%

yield of 1-decylsilane 16, where most of the MgBr moiety was

transferred from the C6 component to C10.
3,12 As shown in

Scheme 6, the added terminal alkene probably prevents free

iron–hydride complex 19 from decomposition by forming

complex 20, which is converted into 21 through hydroirona-

tion and then to 22 via cycle B.13

The Fe–Cu system also catalyzed isomerization of b-phe-
nethylmagnesium chloride (2d) to the a-phenethyl derivative,
presumably because the anion stabilizing ability of the phenyl

group surpasses the steric repulsion between the phenyl and

MgCl groups.14 Thus, treatment of 2d with the Fe–Cu catalyst

(5 mol% of Fe) at�25 1C for 1 h followed by the reaction with

ClSiH2Ph gave 23 in an isomeric purity over 99% (Scheme 7).

In conclusion, we have disclosed that an effective coopera-

tive catalysis is observed in the isomerization of alkyl Grignard

reagents to more stable ones with a system consisting of iron

and copper, which promote isomerization of alkyl groups and

transmetalation between iron and magnesium, respectively.
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